Cyclometallation of phenylhydrazones of ketones. Crystal and molecular structure of $\left[\mathrm{PdCl}\left\{\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)=\mathrm{NNH}\left(\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{Cl}\right)\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right]$

Jaume Granell, Rosa Moragas, Joaquim Sales
Departament de Química Inorgànica, Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain)

Mercè Font-Bardía and Xavier Solans
Departament de Cristal-lografia, Mineralogia i Dipòsits Minerals, Universitat de Barcelona, Martí i Franquès, s/n, 08028 Barcelona (Spain)
(Received October 30, 1991)

Abstract

The reaction of phenylhydrazones $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}(\mathrm{R})=\mathrm{NNH}\left(\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{Cl}\right)\left(\mathrm{R}=\mathrm{Me}, \mathrm{Ph}\right.$, or $\left.\mathrm{PhCH}_{2}\right)$ with PdCl_{2}, in ethanol for 3 days at room temperature and posterior addition of PPh_{3}, leads to the endo five-membered cyclometallated derivatives [$\mathrm{PdCl}_{6}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{R})=\mathrm{NNH}\left(\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{Cl}\right)\left(\mathrm{PPh}_{3}\right)\right.$]. In contrast, from 2,4,6-($\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{C}^{\left(\mathrm{CH}_{3}\right)}=\mathrm{NNH}\left(\mathrm{C}_{6} \mathrm{H}_{3}-2,4-\left(\mathrm{NO}_{2}\right)_{2}\right)$ and palladium acetate, in refluxing acetic acid, the exo five-membered metallocycle $\left[\mathbf{P d C l}\left(2,4-\left(\mathrm{NO}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{NHN}^{2} \mathrm{CCCH}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{2}-2,4,6-\left(\mathrm{CH}_{3}\right)_{3}\right\}$ $\left.\left(\mathrm{PPh}_{3}\right)\right]$ is obtained. $\left[\mathrm{PdCl}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)=\mathrm{NNH}\left(\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{Cl}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]\right.$ crystallizes in the triclinic space group $P 1$, with $a=20.107(4), b=12.678(3), c=12.547(3) \AA, \alpha=114.71(2), \beta=90.72(3), \gamma=115.01(3)^{\circ}$ and $Z=2$; $R_{w}=0.059$ for 7417 reflections. The palladium atom shows a strong interaction with the imine nitrogen atom, the Pd-N distance being $2.860 \AA$.

Introduction

Cyclopalladation reactions have been widely studied [1] to obtain new organometallic compounds by activation of $\mathrm{C}-\mathrm{H}$ bonds, as well as for their applications in organic synthesis. Their reactions with CO, alkynes, alkenes, etc., have led to new pathways for the synthesis of carbocyclic and heterocyclic compounds [2].

Unlike N-donors such as amines, imines and azobenzenes, little attention has been paid to hydrazones. The cyclopalladation of some hydrazones such as acetophenone- and benzophenone- N -phenylhydrazones, by direct reaction with

[^0]palladium salts have been reported [3]. Pfeffer et al. [4], obtained acetophenone cyclometallated derivatives by a different method, that involves reaction of acetophenone and the complex $\left[\mathrm{PdCl}_{2}\left(\mathrm{H}_{2} \mathrm{NNHPh}\right)_{2}\right.$]. There is also one report on the cyclopalladation of the acetylhydrazone of acetylferrocene [5]. In all cases the compounds obtained are endo (the metallocycle contains a double bond $\mathrm{C}=\mathrm{N}$) five-membered derivatives. Natile et al. have studied the cyclopalladation of the methylphenylhydrazone of pinacolone [6]. Depending on the experimental conditions, the metallation of the CMe group or of the tert-butyl group is achieved, with formation, in both cases, of endo metallocycles. The metallation of the phenyl group, which would give exo five-membered derivatives containing $\mathrm{Pd}-\mathrm{C}_{\text {aromatic }}$ bonds, has not been observed. Some cyclopalladated compounds in which the hydrazone is tridentate by coordination of a third atom, of nitrogen or oxygen, have also been reported [7].

Following our studies on the cyclopalladation of benzalazines and imines [8], we report here the preparation of metallocycle derivatives of arylketone phenylhydrazones. When bulky substituents are present in the carbonyl carbon atom, the formation of exo derivatives is achieved.

Results and discussion

The action of PdCl_{2} on the hydrazones $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}(\mathrm{R})=\mathrm{NNH}\left(\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{Cl}\right)[\mathrm{R}=\mathrm{Me}$ (1a), Ph (1b) or PhCH_{2} (1c)] was examined at room temperature, in ethanol for 3 days. The chloro-bridged dimeric compounds formed were treated with $\mathrm{PPh}_{3}(1: 1)$ in order to obtain more soluble monomeric derivatives (2) (eq. 1).

These hydrazones might form endo or exo five-membered metallocycles, but in fact only endo derivatives were obtained, consistent with previous work [3]. Only the endo five-membered compound is formed with the hydrazone 1c, which might have given an endo six-membered compound by metallation of the benzyl ring.

Very different results were obtained with $2,4,6-\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)=\mathrm{NNH}$ $\left\{2^{\prime}, 4^{\prime}-\left(\mathrm{NO}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right\}$, 1d. This can give endo six-membered derivatives by metallation of the ortho methyl substituent, or exo five-membered derivatives by metallation of ortho aromatic carbon atoms of the phenylhydrazine ring. In the same conditions as before (ethanol at room temperature for 3 days) no reaction was observed and the hydrazone was almost quantitatively recovered. Under more
drastic conditions, the reaction with PdAc_{2} in refluxing acetic acid gave only the exo five-membered metallocycle.

1d

2d

The other hydrazones studied ($\mathbf{1 , a , b , c}$) decomposed under these drastic conditions (refluxing acetic acid), and no cyclometallated compound was detected.

The formation of the exo metallocycle $\mathbf{2 d}$ is unexpected, because mesitylbenzylidenamines gave endo six-membered compounds containing Pd-C benzyl bonds, under similar conditions [9]. In addition, the metallated phenylhydrazine ring contains two electron-withdrawing $\left(\mathrm{NO}_{2}\right)$ substituents, that hinder the electrophilic attack of the $\mathrm{Pd}^{\text {II }}$, this being the accepted mechanism for the palladation of N-donor ligands [1].

Nevertheless, the formation of 2d can be explained by the following arguments. In order for $\mathrm{C}-\mathrm{H}$ bond activation to occur, coplanar interaction with the coordination plane of the metal is needed [1]. The mesityl and methyl substituents at the carbonyl carbon atom prevent the adoption of the planar conformation with the imine moiety, and the activation of the ortho methyl group does not occur. On the other hand, the intramolecular hydrogen bond between the ortho NO_{2} substituent of the phenylhydrazine ring and the hydrazine NH group (see below) favours the planarity of phenylhydrazine ring and the imine moiety, which promotes the metallation of this ring.

As with the imine derivatives, the exo metallocycle formed has the hydrazone ligand in the Z form [8b]. Thus, $E-Z$ isomerization occurs during the cyclometallation process, in order to decrease the steric repulsion between the phenylhydrazine ring and the "PdX" moiety. If the metallation could take place without isomerization of the ligand, the exo cyclopalladated derivative formed would have the mesityl ring and the " PdX " group on the same side of the imine $\mathrm{C}=\mathrm{N}$ bond.

In no case has interaction of the palladium atom with an amine nitrogen atom been detected, not even with hydrazone 1d, that has the imine nitrogen shielded by very bulky groups such as methyl and mesityl. The fact that the coordination of the amine nitrogen atom would give endo six- or seven-membered derivatives or exo four-membered derivatives does not favour this type of coordination.

The dependence of the stability of $\mathrm{Pd}-\mathrm{N}$ bonds on the basicity of the N-donor atoms found in N-benzylidenamine derivatives [8b], can be applied to these hydrazone derivatives. Thus, an excess of PPh_{3} breaks the $\mathrm{Pd}-\mathrm{N}$ bond in the

Table 1
Analytical data and melting points

| Compound | Analysis (found (calc.) (\%)) | | | |
| :--- | :--- | :--- | :--- | :--- | \(\left.\begin{array}{c}M.p.

\left({ }^{\circ} \mathrm{C}\right)^{a}\end{array}\right]\)
${ }^{a}$ With decomposition.
benzophenone derivative $\mathbf{2 b}$ and in the exo metallocycle $\mathbf{2 d}$, and compounds $\left[\mathrm{Pd}(\mathrm{C}-\mathrm{N}) \mathrm{X}\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathbf{3 b}, \mathrm{d})$ are formed. In contrast, in the cyclometallated compounds of the more basic hydrazones 2a and 2c, containing alkyl substituents, an excess of PPh_{3} does not break the $\mathrm{Pd}-\mathrm{N}$ bond. The more basic and less bulky PEt_{3} gives, even with the derivatives of hydrazones 1 a and 1c, compounds with two phosphines $\left[\mathrm{PdX}(\mathrm{C}-\mathrm{N})\left(\mathrm{PEt}_{3}\right)_{2}\right]$ 4. Compounds 3 lose one molecule of PPh_{3} giving compounds 2 , when they are eluted with a mixture of CHCl_{3} and $\mathrm{MeOH}(100: 1)$ from silica gel.

Characterization

All the new compounds obtained are air stable and yellow or orange. They are quite soluble in chloroform and dichloromethane and slightly soluble in ethanol and diethylether. The analytical data and decomposition temperatures are shown in Table 1. The IR spectra show bands typical of coordinated phosphines and hydrazones.

The proton and ${ }^{31} \mathrm{P}$ NMR spectra of compounds 2 and 4 , and of the free hydrazones are reported in Table 2. The assignment of the aromatic signals is conclusive evidence of the palladation position (endo or exo). The aromatic proton signals of the metallated ring in compounds 2 , which contain the $\mathrm{Pd}-\mathrm{N}$ bond, are shifted to high fields; this must be caused by a phosphine phenyl ring, consistent with a cis arrangement of the phosphine and the metallated ring and thus a trans disposition of phosphorus and nitrogen atoms. The ${ }^{31} \mathrm{P}$ chemical shifts of compounds 2 (41-43 ppm) are consistent with this trans arrangement. Similarly, compounds 3 ($21-23 \mathrm{ppm}$) have trans phosphines.

The signal assigned to the methine CH_{3} group in the cyclometallated compound $\mathbf{2 d}$ is shifted to low field compared to the free ligand. This shift can be explained by the paramagnetic anisotropy of the palladium atom and indicates a close approach between the metal and the methyl group, suggesting a Z form for the ligand, as has been found for similar exocyclic derivatives of imines [8b,10]. The signal assigned to the NH proton in cyclometallated derivatives $\mathbf{2 a}, \mathbf{b}, \mathbf{c}$ also appears low-field shifted, showing that the ligand adopts a conformation in which the NH group is close to palladium in order to minimize the steric repulsions.

It has been shown by X -ray structure determination that there is an intramolecular hydrogen bond between the ortho nitro and the NH groups in hydrazones

Table 2
${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR data

Compound	${ }^{1} \mathrm{H}{ }^{\text {a }}$		${ }^{31} \mathbf{P}^{\text {b }}$
	Aromatic, NH	Aliphatic	
1a	8.0-7.26 (br m, H arom., NH)	2.62 (s, MeC=N)	
2 a	$9.02\left(\mathrm{~d},{ }^{4} \mathrm{~J}(\mathrm{HP})=2.8, \mathrm{NH}\right)$	2.34 (s, MeC=N)	41.37
	7.87-7.16 (br m, $\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{4}, \mathrm{H}_{5}, \mathrm{PPh}_{3}$)		
	$6.98\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{HH})=9.1, \mathrm{H}_{9}\right)$		
	$6.74\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{HH})=9.1, \mathrm{H}_{10}\right)$		
	$\left.6.58\left(\mathrm{t}^{3} \mathrm{~J} / \mathrm{HH}\right)=9.0, \mathrm{H}_{8}\right)$		
	$6.48\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{HH})=9.0,{ }^{4} \mathrm{~J}(\mathrm{HP})=9.0, \mathrm{H}_{7}\right)$		
4a	7.5-6.9 (br m, H arom., NH)	2.48 ($\mathrm{s}, \mathrm{MeC}=\mathrm{N}$)	9.05
		1.59 (m, CH_{2})	
		$0.98\left(\mathrm{~m}, \mathrm{CH}_{3}\right)$	
1b	7.60-6.90 (br m, H arom., NH)		
2b	$8.82\left(\mathrm{~d},{ }^{4} J(\mathrm{HP})=3.15, \mathrm{NH}\right)$		41.39
	$\begin{aligned} & 7.80-7.26\left(\mathrm{br} \mathrm{~m}, \mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{4}, \mathrm{H}_{5}, \mathrm{PPh}_{3}, \mathrm{PhC}=\mathrm{N}\right) \\ & \text { 6.9-6.4 (br m, H} \end{aligned}$		
1c	$7.78-7.0$ (br m, $\left.\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{NH}\right)$	4.13 (s, $\mathrm{CH}_{2} \mathrm{Ph}$)	
2 c	9.0 ($\left.\mathrm{d},{ }^{4} \mathrm{~J}(\mathrm{HP})=2.82, \mathrm{NH}\right)$	4.11 (s, $\mathrm{CH}_{2} \mathrm{Ph}$)	41.11
	$\begin{aligned} & 7.8-7.2\left(\mathrm{br} \mathrm{~m}, \mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{4}, \mathrm{H}_{5}, \mathrm{PPh}_{3}, \mathrm{CH}_{2} \mathrm{Ph}\right) \\ & \text { 6.9-6.4 (br m, } \left.\mathrm{H}_{7}, \mathrm{H}_{8}, \mathrm{H}_{9}, \mathrm{H}_{10}\right) \end{aligned}$		
4 c	7.5-6.9 (br m, H arom.)	4.40 (s, $\mathrm{CH}_{2} \mathrm{Ph}$)	9.34
		1.56 (m, CH2	
		0.96 (m, CH3)	
1 d	10.72 (s, NH)	2.35 (s, $\mathrm{Me}_{6}, \mathrm{Me}_{10}$)	
	$9.06\left(\mathrm{~d},{ }^{4} \mathrm{~J}(\mathrm{HH})=2.3, \mathrm{H}_{4}\right)$	2.15 (s, Mes, $\mathrm{MeC=N}$)	
	$8.33\left(\mathrm{dd},{ }^{3} \mathrm{~J}(\mathrm{HH})=9,{ }^{4} \mathrm{~J}(\mathrm{HH})=2.3, \mathrm{H}_{2}\right)$		
	$8.05\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{HH})=9, \mathrm{H}_{1}\right)$		
	7.02 ($\left.\mathrm{s}, \mathrm{H}_{7}, \mathrm{H}_{9}\right)$		
2d	10.75 (m, NH)	3.03 (s, MeC=N)	41.87
	$8.58\left(\mathrm{~d},{ }^{4} \mathrm{~J}(\mathrm{HH})=3.6, \mathrm{H}_{4}\right)$	2.37 (s, Me ${ }_{8}$)	
	7.9-7.3 (br m, H2, PPh_{3})	2.23 (Me_{6})	
	7.06 (s, $\mathrm{H}_{7}, \mathrm{H}_{9}$)		

${ }^{a}$ In CDCl_{3}; chemical shifts in ppm with respect to internal SiMe_{4}; coupling constants in Hz ; numbering thus:

${ }^{b}$ In CHCl_{3}; chemical shift (ppm) with respect to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$.
derived from 2,4-dinitrophenylhydrazines [11]. In these compounds, the signal assigned to the NH group appears strongly shifted to low fields ($\delta=10.5-11.5$ ppm). The chemical shift of the NH protons suggests such hydrogen bonding in the metallated derivatives of the hydrazone 1d.

In compounds 4 , the methyl signals of PEt_{3} appear as quintuplets, which is characteristic of a trans arrangement between the phosphines, due to so-called "virtual coupling".

Fig. 1. Molecular structure of $\left[\mathrm{PdCl}_{6}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)=\mathrm{NNH}\left(\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{Cl}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]\right.$.

Crystal structure of $\left[\mathrm{PdCl}\left\{\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)=\mathrm{NNH}\left(\mathrm{C}_{6} \mathrm{H}_{4} 4-\mathrm{Cl}\right)\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right]$
The crystal structure of $\mathbf{3 b}$ has been determined (Fig. 1). Selected bond lengths and bond angles are listed in Table 3, and atomic coordinates in Table 4.

The molecular structure consists of discrete molecules separated by van der Waals distances. The palladium atom is coordinated to $\mathrm{C}(1), \mathrm{P}(1), \mathrm{P}(2)$ and $\mathrm{C}(1)$, and shows a significant interaction with $N(14)$. The $P d, P(1), P(2)$ and $C(1)$ atoms are not coplanar, the largest deviation from the mean plane reaching $0.16 \AA$ for the palladium atom. The angles between adjacent atoms in the coordination sphere lie in the range 86.0° for $\mathrm{C}(1) \mathrm{PdP}(2)$ to 94.6° for $\mathrm{P}(2) \mathrm{PdCl}(1)$. The two phosphine molecules adopt a trans arrangement with an angle $\mathbf{P}(1)-\mathrm{Pd}-\mathrm{P}(2)$ of 169.7°. The metallated phenyl ring [$C(1)-C(6)$] forms a dihedral angle of 86.43° with the coordination plane. The Pd-ligand distances are similar to those found in analogous palladated compounds. The Pd-N(14) distance of $2.860 \AA$ is shorter than the sum of the van der Waals radii (ca. $3.1 \AA$), but is longer than the value found in compounds with a Pd-N bond (ca. $2.0 \AA$), suggesting a significant Pd- - N interaction. The pentacoordination of palladium in metallated derivatives of N -donor ligands has been reported before. In compounds with endo structures derived from Schiff bases, $\left[\mathrm{PdCl}\left(p-\mathrm{ClC}_{6} \mathrm{H}_{3} \mathrm{CH}=\mathrm{N}\right)\left(\mathrm{PEt}_{3}\right)_{2}\right]_{2}$ [13] and $\left[\mathrm{PdBr}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{NC}_{6} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right][12 \mathrm{~b}]$, the palladium atom is coordinated to the imine nitrogen atom with $\mathrm{Pd}-\mathrm{N}$ distances of 2.710 and $2.743 \AA$, respectively. In the hydrazone derivative $\left[\mathrm{PdCl}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{NNHC}_{6} \mathrm{H}_{5}\right)\left(\mathrm{PEt}_{3}\right)_{2}\right.$] [12a] there is an interaction between the palladium and one of the hydrogen atoms of the methyl

Table 3
Selected bond distances $\left({ }^{\circ}\right)$ and angles $\left(^{\circ}\right)$ for 4b

$\mathrm{Cl}(1)-\mathrm{Pd}(1)$	2.426 (2)	C(8)--C(7)	1.518(8)
P(1)- - Pd(1)	2.355(2)	N(14)- -C(7)	1.301(7)
P(2)- - Pd(1)	$2.370(2)$	C(9)- - -C(8)	1.400(15)
C(1)--Pd(1)	$2.026(5)$	C(13)- -C(8)	1.382(10)
$\mathrm{C}(111)-\mathrm{P}(1)$	1.857(5)	C(10)- - C(9)	1.402(11)
C(121) - - P(1)	1.836(8)	C(11)--C(10)	1.346(15)
C(131)- - -P(1)	1.840(8)	C(12)---C(11)	1.363(15)
C(211)--P(2)	1.844(5)	C(13)---C(12)	1.398(9)
C(221)---P(2)	1.860(9)	$\mathrm{N}(15)-\mathrm{-N}(14)$	1.379 (8)
C(231) - - P(2)	1.819 (7)	C(16)- - -N(15)	1.391(7)
$\mathrm{C}(2)-\mathrm{C}(1)$	1.389 (10)	C(17)--C(16)	$1.411(8)$
C(6)--C(1)	1.405(9)	C(21)- - -C(16)	1.383(11)
C(3)- - C(2)	$1.390(9)$	$\mathrm{C}(18)-\mathrm{C}(17)$	$1.349(8)$
C(4)- - C(3)	1.393(14)	$\mathrm{C}(19)-\mathrm{C}(18)$	1.390 (12)
C(5) - - $\mathrm{C}(4)$	1.370 (11)	C(20)--C(19)	1.423(12)
C(6)-- -C(5)	1.416(8)	$\mathrm{Cl}(2)-\mathrm{C}(19)$	1.731(7)
$C(7)-$ - C (6)	1.467(10)	C(21)--C(20)	1.364(10)
$\mathrm{P}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(1)$	90.3(1)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(1)$	123.3(5)
$\mathrm{P}(2)-\mathrm{Pd}(1)-\mathrm{Cl}(1)$.	94.6(1)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	$118.3(6)$
$\mathrm{P}(2)-\mathrm{Pd}(1)-\mathrm{P}(1)$	169.7(1)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	119.9(5)
$\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(1)$	172.3(2)	$\mathrm{N}(14)-\mathrm{C}(7)-\mathrm{C}(6)$	119.8(5)
$\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{P}(1)$	87.9(2)	$\mathrm{N}(14)-\mathrm{C}(7)-\mathrm{C}(8)$	120.3(6)
$\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{P}(2)$	86.0(2)	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	120.0(6)
$\mathrm{C}(111)-\mathrm{P}(1)-\mathrm{Pd}(1)$	120.8(3)	$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{C}(7)$	120.3(8)
$\mathrm{C}(121)-\mathrm{P}(1)-\mathrm{Pd}(1)$	111.3(3)	$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{C}(9)$	119.4(6)
$\mathrm{C}(121)-\mathrm{P}(1)-\mathrm{C}(111)$	102.4(3)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	118.0(9)
$\mathrm{C}(131)-\mathrm{P}(1)-\mathrm{Pd}(1)$	111.6(2)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	122.0(12)
$\mathrm{C}(131)-\mathrm{P}(1)-\mathrm{C}(111)$	105.2(3)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	120.3(8)
$\mathrm{C}(131)-\mathrm{P}(1)-\mathrm{C}(121)$	103.7(4)	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	119.9(7)
$\mathrm{C}(211)-\mathrm{P}(2)-\mathrm{Pd}(1)$	119.8(3)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(8)$	120.3(8)
$\mathrm{C}(221)-\mathrm{P}(2)-\mathrm{Pd}(1)$	118.9(2)	$\mathrm{N}(15)-\mathrm{N}(14)-\mathrm{C}(7)$	116.4(5)
$\mathrm{C}(221)-\mathrm{P}(2)-\mathrm{C}(211)$	100.8(3)	$\mathrm{C}(16)-\mathrm{N}(15)-\mathrm{N}(14)$	120.2(5)
$\mathrm{C}(231)-\mathrm{P}(2)-\mathrm{Pd}(1)$	108.0(3)	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{N}(15)$	123.4(6)
$\mathrm{C}(231)-\mathrm{P}(2)-\mathrm{C}(211)$	102.1(3)	$\mathrm{C}(21)-\mathrm{C}(16)-\mathrm{N}(15)$	119.0(5)
$\mathrm{C}(231)-\mathrm{P}(2)-\mathrm{C}(221)$	105.4(4)	$\mathrm{C}(21)-\mathrm{C}(16)-\mathrm{C}(17)$	117.6(5)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Pd}(1)$	116.8(5)	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	121.8(7)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{Pd}(1)$	124.3(5)	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(17)$	119.9(6)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	118.9(5)	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	119.6(6)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	122.2(7)	$\mathrm{Cl}(2)-\mathrm{C}(19)-\mathrm{C}(18)$	120.2(6)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	118.9(7)	$\mathrm{Cl}(2)-\mathrm{C}(19)-\mathrm{C}(20)$	120.067)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	120.0(6)	$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(19)$	118.7(8)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	121.6(7)	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(16)$	122.2(7)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	118.4(6)		

group because the molecule has rotated around the $\mathrm{C}-\mathrm{C}$ bond of $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{N}$ moiety, and the imine nitrogen atom is distant from the metal.

The crystal structure of $\mathbf{1 b}$ has not been determined, but the molecular structure of the analogous p-nitrophenylhydrazone of benzophenone is known[11]. The angles and bond distances of the metallated p-chloro-compound are very similar to those of the free p-nitrophenylhydrazone. The hydrazone moiety $\mathrm{C}(6) \mathrm{C}(7) \mathrm{N}(14)$ and $\mathrm{N}(15)$ remains planar and is nearly coplanar with the metallated phenyl ring

Table 4
Fractional atomic coordinates $\left(\times 10^{4} ; \mathrm{Pd} \times 10^{5}\right)$ of $\mathbf{4 b}\left(B_{\mathrm{eq}}=8 \pi^{2} / 3 \sum_{i j} U_{i j} a_{i} a_{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}\right)$

	\boldsymbol{x}	y	z	$B_{\text {eq }}$
Pd(1)	72765(2)	59518(4)	55535(4)	3.15(2)
$\mathrm{Cl}(1)$	6298(1)	4662(2)	3714(2)	4.55(7)
$\mathbf{P}(1)$	7539 (1)	7892(2)	5440(2)	3.56 (7)
P(2)	6959(1)	4181(2)	6001(2)	3.51(7)
C(111)	8456(3)	9403(6)	6263(6)	$3.82(28)$
C(112)	8968(4)	9904(7)	5623(7)	4.64(33)
C(113)	9658(4)	11068(7)	6281(9)	5.70(40)
C(14)	9831(4)	$11709(7)$	7499(9)	$5.80(40)$
C(115)	9334(4)	11212(7)	8106(8)	5.75(37)
C(16)	8650(4)	10076(6)	7488(7)	4.87(32)
C(121)	6856(4)	8475(6)	5998(6)	3.98(29)
C(122)	7020(4)	9767(7)	6432(7)	5.17(36)
C(123)	6467(5)	$10131(9)$	6814(8)	6.38(47)
C(124)	5769(5)	9222(10)	$6760(8)$	6.61(48)
C(125)	5598(4)	7921(10)	6307(8)	6.61(44)
C(126)	6134(4)	7523(8)	5923(7)	$5.37(35)$
C(131)	7428(4)	7605(6)	3869(6)	$3.90(27)$
C(132)	7808(5)	6969(7)	3151(7)	5.83(41)
C(133)	7706(6)	6667(8)	1951(8)	6.72(48)
C(134)	7228(6)	6903(9)	1434(8)	7.08(44)
C(135)	6855(5)	7571(9)	2153(8)	6.91(45)
C(136)	6955(4)	7898(7)	$3352(7)$	$4.90(34)$
C(211)	6475(3)	2472(6)	4775(6)	3.76 (27)
C(212)	6572(5)	2189(7)	3618(7)	$5.41(37)$
C(213)	6274(5)	881(8)	2739(7)	$6.20(42)$
C(214)	5864(4)	- 153(7)	2974(8)	$5.36(37)$
C(215)	5765(4)	124(7)	4111(8)	5.54 (38)
C(216)	6064(4)	1444(6)	5026(7)	4.82(32)
C(221)	7718(4)	4141(7)	6820(6)	$4.12(29)$
C(222)	8049(4)	4997(8)	8028(7)	$5.55(39)$
C(223)	8608(5)	4919(10)	8610(9)	6.75(48)
C(224)	8838(5)	3981(11)	7985(11)	$7.33(59)$
C(225)	8555(5)	3194(9)	6810(10)	6.44(48)
C(226)	7982(4)	3250(8)	6204(8)	5.75(40)
C(231)	6280(3)	4196(6)	6945(6)	3.76 (26)
C(232)	5726(4)	4480(7)	6647(7)	4.84(34)
C(233)	5163(4)	4458(9)	7302(8)	$6.09(44)$
C(234)	5183(5)	4232(9)	8256(9)	6.95(47)
C(235)	5728(5)	3960(9)	8590(8)	6.64(46)
C(236)	6281(4)	3916(8)	7913(7)	5.48(38)
C(1)	7994(3)	7102(6)	7201(5)	4.08(24)
C(2)	7686(4)	7515(6)	8183(6)	$5.00(29)$
C(3)	8118(5)	8291(7)	9359(6)	6.40 (37)
C(4)	8881(5)	8636(8)	9562(6)	6.97(39)
C(5)	9200(4)	8257(8)	8607(6)	5.85(33)
C(6)	8768(3)	7485(6)	7403(6)	4.46(27)
C(7)	9157(3)	7162(6)	6428(5)	$3.90(26)$
C(8)	10013(3)	7816(6)	6706(6)	4.34(28)
C(9)	10385(4)	7091(9)	6674(11)	8.37(54)
C(10)	11175(5)	7723(10)	6896(12)	9.98 (68)
C(11)	11573(4)	8984(8)	7119(9)	6.67(44)
C(12)	11213(4)	9682(7)	7114(7)	$5.31(33)$

Table 4 (continued)

	x	y	z	$B_{\text {cq }}$
C(13)	10427(3)	9098(6)	6902(6)	4.25 (28)
N(14)	8769(3)	6365(5)	5321(5)	$4.27(23)$
N(15)	9176(3)	6193(6)	4445(5)	5.06 (26)
C(16)	8816(3)	5200(6)	3270(6)	4.11 (28)
C(17)	8025(4)	4441(6)	2863(6)	4.63(29)
C(18)	7694(4)	3474(7)	1720(6)	5.47(33)
C(19)	8135(5)	3239(8)	895(7)	6.51(40)
C(20)	8934(5)	3982(9)	1278(8)	$7.17(45)$
C(21)	9247(4)	4968(7)	2435(7)	5.64(36)
$\mathrm{Cl}(2)$	7717(2)	1971(3)	-562(2)	11.80(16)
OW(1)	4426(3)	8344(4)	10038(4)	$5.57(22)$
OW(2)	4252(5)	2024(7)	391(5)	10.56(44)

(the dihedral angle is 7.63°). The two phenyl rings of the methine carbon atom form a dihedral angle of 101.79°, larger than in the hydrazone (70.4°), to minimize steric repulsions.

Experimental

NMR spectra were obtained on a Bruker WP $80 S Y\left({ }^{1} \mathrm{H}, 80.13 \mathrm{MHz} ;{ }^{31} \mathrm{P}, 32.8\right.$ MHz) spectrometer. IR spectra were recorded as KBr disks on a Perkin Elmer 1330 spectrometer. Microanalyses were performed by the Institut de Química Bio-Orgànica de Barcelona (CSIC).

Materials and synthesis

Solvents were dried and distilled before use. The hydrazones were obtained from the corresponding benzaldehydes and the appropriate hydrazines under standard conditions (refluxing ethanol) [14].
$\left[\mathrm{PdCl}\left\{\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{R})=\mathrm{NNH}\left(4-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)\right\}\left(\mathrm{PPh}_{3}\right)\right], \mathrm{R}=\mathrm{Me}, \mathrm{Ph}, \mathrm{PhCH}_{2}$, (2a,b,c). A stirred suspension of $\mathrm{PdCl}_{2}(2 \mathrm{mmol}, 0.35 \mathrm{~g})$ in $\mathrm{EtOH}(30 \mathrm{ml})$ was treated with 2.2 mmol of the corresponding hydrazone for 3 days at room temperature. The precipitate was washed with ethanol and ether and used without further purification in the preparation of 2. A stirred suspension of the precipitate (0.33 g) was treated with $\mathrm{PPh}_{3}(0.75 \mathrm{mmol}, 0.19 \mathrm{~g})$ in refluxing acetone (30 ml) for 1 h and then filtered. The filtrate was concentrated in vacuo and the solid obtained after addition of ether was purified by column chromatography over SiO_{2}, with a mixture of CHCl_{3} and $\mathrm{MeOH}(100: 1)$ as eluant, to give compounds $\mathbf{2 a , b , c}$ in 70% yield.
 stirred suspension of $\mathrm{Pd}(\mathrm{AcO})_{2}(2 \mathrm{mmol}, 0.45 \mathrm{~g})$ in acetic acid (30 ml) was treated with 0.75 g (2.2 mmol) of hydrazone 1d under reflux for 3 h . The precipitate was washed with ethanol and ether and used without further purification in the preparation of 2 d . A stirred suspension of the precipitate (0.38 g) was treated with $\mathrm{PPh}_{3}(0.75 \mathrm{mmol}, 0.19 \mathrm{~g})$ and $\mathrm{LiBr}(0.75 \mathrm{mmol}, 0.065 \mathrm{~g})$ in refluxing acetone (30
ml) for 1 h and then filtered. The filtrate was concentrated in vacuo and the solid obtained after addition of ether was purified by column chromatography over SiO_{2}, with the $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ eluant, to give compound $\mathbf{2 d}$ in 70% yield.
$\left[P d X(C-N)\left(P^{2} h_{3}\right)_{2}\right](3 b, X=C l ; 3 d, X=B r)$. A stirred suspension of compound $2(0.5 \mathrm{mmol})$ was treated with $\mathrm{PPh}_{3}(0.75 \mathrm{mmol}, 0.19 \mathrm{~g})$ in refluxing acetone for 1 h and then filtered. The filtrate was concentrated in vacuo and the solid obtained after addition of ether was washed with ether and recrystallized with CHCl_{3} to give compounds $\mathbf{3 b}$,d in 90% yield.
$\left[\mathrm{PdCl}\left\{\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{R})=\mathrm{NNH}\left(4-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)\right\}\left(\mathrm{PEt}_{3}\right)_{2} /\right.$ (4a,c). A stirred suspension of $\mathrm{PdCl}_{2}(2 \mathrm{mmol}, 0.35 \mathrm{~g})$ in $\mathrm{EtOH}(30 \mathrm{ml})$ was treated with 2.2 mmol of hydrazone for 3 days at room temperature. The precipitate formed was washed with ethanol and ether and used without further purification in the preparation of 4. A stirred suspension of the precipitate (0.33 g) was treated under nitrogen with PEt_{3} (2 $\mathrm{mmol}, 0.24 \mathrm{~g}$) in refluxing acetone (30 ml) for 1 h and then filtered. The filtrate was concentrated in vacuo and the solid obtained after addition of ethanol was recrystallized from $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ to afford compounds $4 \mathbf{a}, \mathrm{c}$ in $60-70 \%$ yield. Crystal data: $\mathrm{C}_{55} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Cl}_{2} \mathrm{Pd} \cdot 2 \mathrm{H}_{2} \mathrm{O} . \mathrm{F}_{\mathrm{w}}=1008.26$, triclinic, $a=20.107(4) ; b=$ 12.678(3); $c=12.547(3) \AA ; \alpha=114.71(2) ; \beta=90.71(3), \gamma=115.01(3)^{\circ} . V=2563(2)$ $\AA^{3}, P 1, D_{\mathrm{x}}=1.306 \mathrm{~g} \mathrm{~cm}^{-3}, Z=2, F(000)=1036.0, \lambda\left(\mathrm{Mo}-K_{\alpha}\right)=0.71069 \AA, \mu(\mathrm{Mo}-$ K_{α}) $=5.65 \mathrm{~cm}^{-1}, 298 \mathrm{~K}$.

Data collection. A prismatic crystal ($0.1 \times 0.1 \times 0.2 \mathrm{~mm}$) was selected and mounted on a Philips PW-1100 diffractometer. Unit cell parameters were determined from automatic centring of 25 reflections ($8 \leqslant \theta \leqslant 12^{\circ}$) and refined by the least-squares method. Intensities were collected with graphite monochromatized Mo- K_{α} radiation, using the ω-scan technique. 7423 reflections were measured in the range $2 \leqslant \theta \leqslant 25,7417$ of which were assumed as observed applying the condition $I \geqslant 2.5 \sigma(I)$. Three reflections were measured every 2 h as orientation and intensity control, and significant intensity decay was not observed. Lorentzpolarization but no absorption corrections were made.

Structure solution and refinement. The structure was solved by Patterson synthesis, using the shelxs computer program [15] and refined by full-matrix leastsquares method, with the shelx76 computer program [16]. The function minimized was $\sum w\left[\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right]^{2}$, where $w=\sigma^{-2}\left(F_{\mathrm{o}}\right) . f, f^{\prime}$ and $f^{\prime \prime}$ were taken from International Tables of X-ray Crystallography [17]. The position of 43 H atoms was located from a difference synthesis and refined with an overall isotropic temperature factor using a riding model. The final R factor was 0.059 ($R_{w}=0.059$) for all observed reflections. The number of refined parameters was 630 . Max. shift $/$ esd $=$ 0.1 , max. and min. peaks in final difference synthesis were 0.4 and $-0.4 \mathrm{e}^{\AA^{-3}}$, respectively.

Supplementary material available. Full tables of bond lengths and angles, hydrogen coordinates, thermal parameters, and structure factors are available from the authors.

Acknowledgments

We thank the DGICYT (PB 86-575) for financial support and Johnson Matthey Inc. for a loan of palladium chloride.

References

1 G.R. Newkome, W.E. Puckett, W.K. Gupta and G.E. Kiefer, Chem. Rev., 86 (1986) 451; I. Omae, Coord. Chem. Rev. 83 (1988) 137; V.V. Dunina, O.A. Zalevskaya and V.M. Potatov, Russ. Chem. Rev., 57 (1988) 250; A.D. Ryabov, Chem. Rev. 90 (1990) 403.
2 A.D. Ryabov, Synthesis, (1985) 233; M. Pfeffer, Recl. Trav. Chim. Pays-Bas, 109 (1990) 567.
3 B.N. Cockburn, D.V. Howe, T. Keating, B.F.G. Johnson and J. Lewis, J. Chem. Soc., Dalton Trans, (1973) 404; J.M. Thompson and R.F. Heck, J. Org. Chem., 40 (1975) 2667; P. Espinet, G. Garcia, F.J. Herrero, Y. Jeanin and M. Philoche-Levisalles, Inorg. Chem., 28 (1989) 4207.

4 J. Dehand, M. Pfeffer and M. Zinsius, Inorg. Cnim. Acta, 13 (1975) 229; J. Dehand, J. Jordanov and M. Pfeffer, J. Chem. Soc., Dalton Trans., (1976) 1553.

5 N. Nonoyama and M. Sugimoto, Inorg. Chim. Acta, 35 (1979) 131.
6 B. Galli, F. Gasparrini, L. Maresca, G. Natile and G. Palmieri, J. Chem. Soc., Dalton Trans., (1983) 1483.

7 M. Nonoyama, Inorg. Chim. Acta, 28 (1978) L163; M. Nonoyama, J. Inorg. Nucl. Chem., 42 (1980) 297; M. Nonoyama and Ch. Sugiura, Polyhedron, 1 (1982) 179.
8 (a) R. Ceder, J. Sales, X. Solans and M. Font, J. Chem. Soc., Dalton Trans., (1986) 1351; (b) J. Albert, M. Gómez, J. Granell, J. Sales and X. Solans, Organometallics, 9 (1990) 1405.
9 J. Albert, J. Granell, J. Sales, X. Solans and M. Font, Organometallics, 5 (1986) 2567.
10 J. Albert, J. Barro and J. Granell, J. Organomet. Chem. 408 (1991) 115.
11 M.G.B. Drew and G.R. Willey, J. Chem. Soc., Perkin Trans. II, (1986) 215.
12 (a) J. Dehand, J. Fischer, M. Pfeffer, A. Mitschler and M. Zinsius, Inorg. Chem., 15 (1976) 2675; (b) J. Granell, D. Sainz, J. Sales, X. Solans and M. Font, J. Chem. Soc., Dalton Trans., (1986) 1785.

13 J. Granell, J. Sales, J. Vilarrasa, J.P. Declerq, G. Germain, G. Miravitlles and X. Solans, J. Chem. Soc., Dalton Trans., (1983) 2441.
14 S. Patai, The chemistry of the carbon-nitrogen double bond, John Wiley \& Sons, New York, 1970; Beilstein, Handbuch der Organischen Chemie, 15 (1935) 137, series H.
15 G.M. Sheldrick, Acta Crystallogr., Sect. A, 46 (1990) 467.
16 G.M. Sheldrick, silelx-76. A computer program for crystal structure determination, University of Cambridge, UK.
17 International Tables of X-ray Crystallography, Vol. 4, Kynoch Press, Birmingham, UK, 1974, pp. $99-100$ and 149.

[^0]: Correspondence to: Dr. J. Granell or Professor J. Sales, Departament de Química, Inorgànica, Universitat de Barcelona, Diagona 647, 08028 Barcelona, Spain.

